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Abstract

Continuous airflow monitoring can improve the safety of the underground work force by ensuring 

the uninterrupted and controlled distribution of mine ventilation to all working areas. Air velocity 

measurements vary significantly and can change rapidly depending on the exact measurement 

location and, in particular, due to the presence of obstructions in the air stream. Air velocity must 

be measured at locations away from obstructions to avoid the vortices and eddies that can produce 

inaccurate readings. Further, an uninterrupted measurement path cannot always be guaranteed 

when using continuous airflow monitors due to the presence of nearby equipment, personnel, roof 

falls and rib rolls. Effective use of these devices requires selection of a minimum distance from an 

obstacle, such that an air velocity measurement can be made but not affected by the presence of 

that obstacle. This paper investigates the impacts of an obstruction on the behavior of downstream 

airflow using a numerical CFD model calibrated with experimental test results from underground 

testing. Factors including entry size, obstruction size and the inlet or incident velocity are 

examined for their effects on the distributions of airflow around an obstruction. A relationship is 

developed between the minimum measurement distance and the hydraulic diameters of the entry 

and the obstruction. A final analysis considers the impacts of continuous monitor location on the 

accuracy of velocity measurements and on the application of minimum measurement distance 

guidelines.
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Introduction

The proper control and distribution of ventilation air are key considerations in improving the 

health and safety of underground mine workers (Thimons and Kohler, 1985). Continuous 

monitoring of airflow velocity is one means of accomplishing this. While transverse plane 

handheld anemometers can be moved to avoid airflow obstructions that can affect 

measurement accuracy, continuous readings are typically made only at fixed positions and, 
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at times, may be influenced by nearby obstructions. Effective use of continuous airflow 

monitoring requires knowledge of the minimum measurement distance, beyond which the 

effects of vortices and eddies are reduced, allowing for accurate measurement of airflow 

velocities. According to Kohler and English (1983), much attention has been focused on this 

problem, with recommendations first reported as early as 1926. Unfortunately, the widely 

varying suggestions, such as recommended measurement locations from 10 to 100 entry 

diameters downstream of obstructions, are too broad to be of help (Kohler and English, 

1983). A criterion specifying the minimum downstream distance at which a measurement 

can be made from an obstruction would be very helpful. Kohler and English (1983) and 

Thimons and Kohler (1985) recommended that measurements at locations near obstructions 

or changes in the air course should be avoided when possible, and that measurements should 

always be made at minimum distances of three entry diameters upstream and ten entry 

diameters downstream of the obstruction if it is unavoidable. The authors also stated that 

downstream effects of obstructions or changes are much more pronounced than upstream 

effects; consequently, measurements should be obtained on the upstream side of the 

obstructions.

In the above recommendations, entry size is taken as the only factor affecting measurement 

distance. However, the size of the obstruction could also influence the minimum distance, as 

a larger obstruction could produce a larger disturbed area downstream than a smaller-sized 

obstruction. In addition, the incident airflow velocity could have an effect on the airflow 

downstream of the obstruction. Therefore, identifying the factors influencing the minimum 

downstream measurement distance is critical for proper interpretation of output from 

continuous airflow monitors. Thus far, no comprehensive analysis on how an obstruction 

affects the minimum distance has been performed in mining research.

Computational fluids dynamics (CFD) is a widely used technique for modeling and 

understanding the behavior of fluids. Increased computer power in the last decade has been a 

dominant factor in determining the rapid growth of industrial utilization of this technique. 

CFD modeling is the process of representing a fluid flow problem by way of fundamental 

governing equations of fluid dynamics, which are based on the laws of conservation of mass 

and momentum. CFD can be easily coupled to modern tools for three-dimensional 

visualization and for creating maps of velocity vectors, streamlines, iso-value contours, etc. 

By running a CFD analysis of a dynamic fluid flow, an analyst can gain insight into the 

dynamic behavior of a physical system that is otherwise often very difficult, time-consuming 

and expensive to achieve using experimental methods.

A growing number of CFD studies have been performed in mine ventilation research, due to 

its significant advantages, which include illustrative presentation of results and its use as an 

alternative to expensive, time-consuming or difficult experimentation. Gong and Bhaskar 

(1992) developed a three-dimensional mathematical model to evaluate airflow fields at a 

continuous miner face. Hargreaves and Lowndes (2007) constructed a series of steady-state 

CFD models to replicate the ventilation flow patterns seen at the end of a continuous miner 

face during the various stages of a cutting and bolting cycle. Aminossadati and Hooman 

(2008) used CFD modeling to investigate the effects of brattice length on fluid flow 

behavior in underground crosscut regions. Wala et al. (2007) conducted a validation study of 
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CFD code by comparing its results against mining-related benchmark experimental data, 

with the conclusion that CFD is a useful method for the analysis of underground mine face 

ventilation systems.

Although no CFD studies have been done regarding the impact of obstructions on minimum 

measurement distance, there are a great number of studies in the field of wind and 

mechanical engineering (Lu et al., 1999; Sahini, 2004; Konno et al., 2009; Izadi et al., 2009; 

Dhiman and Hasan, 2010; Tavakol and Yaghoubi, 2010; Meile et al., 2011) that have 

demonstrated the successful use of CFD to investigate the movement of airflow around 

obstructions.

In this paper, a CFD model was created to investigate the impact of an obstruction on the 

output of an anemometer located in an underground mine entry. This model was 

subsequently validated with experimental test results obtained from underground testing. 

Parameters such as incident air velocity, obstruction size and entry size were evaluated for 

their potential impacts on the output of this anemometer. Criteria were also specified for 

locating a continuous recording anemometer to minimize measurement inaccuracies.

Validation of the CFD model

As a numerical solution method for complex, real problems, CFD cannot avoid necessary 

engineering simplifications and mathematical approximations. The CFD model needs to be 

well validated against a range of relevant experimental data before it can be successfully 

applied to further analyses. To address this need, a series of underground tests were 

conducted at the U.S. National Institute for Occupational Safety and Health (NIOSH) 

Bruceton Experimental Mine to study the effects of obstructions on the readings of 

ultrasonic anemometers (Martikainen et al., 2011). The current work uses these 

experimental test results to validate the CFD model for the study of obstruction effects.

Experimental tests

Three tests were conducted at the NIOSH Bruceton Experimental Mine (Fig. 1) to study the 

impact of obstructions on ultrasonic anemometer readings (Martikainen et al., 2011). 

Testing occurred at a location (location 1) in a long, straight section of a tunnel with a cross-

sectional area of 5.3 m2 (57 ft2). The second location (location 2) is in a curve of about 45°. 

Location 3 is in an entry to an opening used to run cables through a bulkhead. The cross 

sectional area of location 3 is 3.0 m2 (32 ft2), and the cross sectional area of the opening is 

0.7 m2 (7.5 ft2).

An electrician's personnel and equipment carrier cart was placed at location 1 and location 2 

to examine the impacts of this stationary obstruction on airflows. Due to the smaller cross 

sectional area of location 3, no obstruction was presented for the ultrasonic anemometer 

airflow measurements.

Comparing location 1 and location 2, the latter is at a 45° bend where the airflow direction 

and flow pattern will vary as air moves through the bend. The air velocity measurements at 

location 2 were influenced not only by the presence of an obstruction in the airstream, but 

also by the changes in flow direction. The test results at location 1 were not affected by 
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changes in air course (bends, intersections, etc.) but only by the presence of the obstruction. 

Therefore, location 1 is the best choice among the three testing locations for constructing a 

CFD model to investigate the influence of an obstruction on airflow measurements.

During the testing at location 1, two-axis ultrasonic anemometers were placed on both sides 

of the entry with the three-axis ultrasonic anemometer set in the middle (Fig. 2). The cart 

obstruction was placed 3 m (9.8 ft) upstream of the anemometers in the middle of the entry. 

Six two-axis ultrasonic readings were made on each side of the entry, with one three-axis 

ultrasonic reading made in the middle. The two-axis velocity measurements were taken at 

0.4 m (1.3 ft), 1.1 m (3.6 ft), 1.5 m (4.9 ft) and 2.6 m (8.5 ft) from the left rib, and at heights 

of 0.6 m (2 ft), 1.2 m (4 ft) and 1.6 m (5.5 ft) above the floor (Martikainen et al., 2011).

Construction of the computational model—The numerical models presented in this 

paper were developed using the commercial CFD software package ANSYS Fluent, Version 

13. The constructed 3-D CFD model consists of two primary components: a long rectangular 

entry 1.9 m (6.2 ft) high, 2.9 m (9.5 ft) wide, and 60 m (197 ft) long, with a cart 2.6 m (8.5 

ft) long, 0.95 m (3.1 ft) wide and 1.2 m (4 ft) high acting as an obstruction located 20 m (66 

ft) from the left inlet of the entry (Fig. 3). A constant inlet or incident velocity condition of 

1.2 m/s (236 ft/min) in the horizontal direction was applied at the inlet. The pressure outlet 

boundary condition was applied at the outlet, while the wall boundary was treated using a 

wall-function approach. Turbulence models, including standard k-epsilon, RNG k-epsilon, 

and SST k-omega were evaluated for this specific model. Because differences in the results 

of these approaches were slight, the results presented in this paper are based on the more 

common standard k-epsilon treatment.

Comparison of experiment data and simulated data—Figure 4 shows the CFD-

simulated velocity distribution 3 m downstream of the obstruction, which corresponds to the 

measurement plane in Fig. 2. Also shown are the locations where the air velocity 

measurements were collected during the underground study.

Figure 5 compares the thirteen measured air velocities and their CFD-simulated values 

shown in Fig. 4. Considering the good agreement between the two sets of data, it appears 

that the CFD model agrees well with the experimental test results at location 1. In other 

words, the CFD model has been successfully validated in this specific case and thus can be 

used for further studies related to the obstruction investigation.

CFD model for the larger-sized entry—The NIOSH Bruceton Experimental Mine, 

where the underground obstruction experiments were conducted, was developed in the 

1910s for testing of gasoline locomotives, mining machinery, explosives, electrical 

equipment and ventilation methods. The 2.7-m (9-ft) entry width is much smaller than the 

4.5-m (15-ft) to 6.0-m (20-ft) widths currently found in modern coal mines. Therefore, in the 

CFD model, the entry size was scaled up to a more typical width of 5.5 m (18 ft) and a 

height of 2.4 m (7.8 ft). The new CFD model for the larger entry size retains all relevant 

configurations including cart size, meshing size, boundary conditions and turbulent model 

design. All results and discussion presented in the next section refer to the larger entry size 

unless otherwise indicated.
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Results and discussion

Wake zone downstream of the obstruction

The CFD simulations provide insight into the effects of the obstruction on the profile of the 

downwind airflow. A profile of velocity u around the obstruction at the centerline plane of 

the entry (z = 2.75 m) is given in Fig. 6. For the physical flow of fluid past an obstruction, 

experimental observations indicate that the flow generally separates at certain points on the 

obstruction, creating a highly turbulent region behind the object, called the wake (Wu, 

1961). The occurrence of three wake zones in the area behind the cart, in the foot board and 

in the region behind the cart seat back, can be seen from the plot of velocity contours and 

vectors in the CFD simulations. This figure indicates a circular cavity of relatively slow 

moving air on the downwind side of the obstruction.

A wake is characterized by negative pressure within its boundary and the presence of 

inefficient mixing with outside airflow. The effects of a wake weaken with increasing 

distance from an obstruction. In a free stream, such as a building in the atmosphere, the 

height of the wake region often extends up to about 2.5 times the height of the obstruction 

and extends downwind upwards to 10 times the height of the obstruction (APTI, 2011). A 

similar scenario with the wake zones extending above and behind the cart can be seen in Fig. 

6. As demonstrated in the figure, it is also apparent that the downstream effects of 

obstructions are much more pronounced than the upstream effects.

Factors affecting measurement site selection downstream of an obstruction

The obstruction size, the entry size and even the initial airflow velocity can affect the size 

and extent of the wake zones and, consequently, the minimum measurement distance 

downstream of an obstruction. The following CFD models were constructed to study the 

impact of these factors.

1) Entry size—In the recommendations given by Kohler and English (1983) and Thimons 

and Kohler (1985) regarding selection of an airflow measurement site downstream of an 

obstruction, the entry size or, more accurately, the entry diameter, was the only element 

considered. It is apparent that the entry size could affect the minimum downstream distance. 

Therefore, in this study, two comparable CFD models were constructed with different entry 

dimensions: 5.5 m (18 ft) wide by 2.4 m (8 ft) high, and 3.5 m (11 ft) wide by 1.9 m (6.2 ft) 

high. Incident or inlet velocity was 1.2 m/s (236 ft/min). Cart size, boundary conditions and 

initial conditions were the same as in the previous analysis.

The velocity contours illustrated in Fig. 7 demonstrate that entry size has a significant 

influence on the extent of the wake zone. They are plotted out at the plane 0.6 m (2 ft) above 

the floor of the entry, which is the centerline of the wake zone and where the wake zone 

reaches its furthest extent (Fig. 7). Minimum measurement distance should not be 

determined from plotted velocity contours. The actual point velocity values are needed to 

establish the location where minimal velocity change occurs with the presence of the 

obstacle. However, the sizes and extents of the wake zones are readily seen in this figure. 

Generally, a larger wake zone corresponds to a larger minimum measurement distance. A 
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smaller entry develops higher airflow velocities near an obstruction, but a larger entry shows 

a larger downstream wake. For a similarly sized obstruction, the wake zone and, therefore, 

the minimum measurement distance, increases with the entry dimensions.

2) Obstruction size—To investigate the impacts of obstruction size on the airflow 

patterns downstream of an obstruction, two sets of models were built based on the validated 

CFD model. The first two models studied the influence of the obstruction height on the 

airflow, with cart heights of 1.2 m (4 ft) and 2.0 m (6.6 ft), using entry dimensions of 5.5 m 

(18 ft) wide by 2.4 m (8 ft) high. The simulated velocity contours at the 0.6-m (2-ft) and 1.1-

m (3.6-ft) planes above the entry floor, for the cart heights of 1.2 m (4 ft) and 2.0 m (6.6 ft), 

are presented in Fig. 8. With the increased obstruction height, this figure shows the 

increased length of the disturbed area downstream of the cart, as well as the higher airflow 

velocities on both sides of the cart.

The second model considered cart widths of 0.95 m (3.1 ft) and 2.95 m (10 ft) to assess the 

impact of obstruction width on airflow distribution. Entry dimensions, again, were 5.5 m (18 

ft) wide by 2.4 m (8 ft) high, and the cart was 1.2 m (4 ft) high. Figure 9 shows that the 

wider cart produced a larger disturbed area downstream of the cart. A maximum velocity of 

1.90 m/s (374 ft/min) was obtained with the wider cart, compared to a lower velocity of 1.40 

m/s (276 ft/min) with the narrower cart. These simulation results illustrate that the 

obstruction size can have a significant impact on the extent of the wake zone downstream of 

the obstruction and, therefore, on the minimum measurement distance.

3) Inlet velocity—Numerical calculations were made for inlet flow velocities of 0.5 m/s 

and 5 m/s to study the impacts of this factor on the distribution of airflow around the cart. 

For this analysis, entry size was 5.5 m wide by 2.4 m high and the cart was 1.2 m high by 

0.95 m wide. Comparing the two plots of horizontal velocity at the centerline plane for an 

inlet or incident velocity of 0.5 m/s (top) and 5 m/s (bottom), very similar velocity contours 

near the cart were obtained, and no differences were observed except that the magnitude of 

the velocity component increased (Fig. 10). Similar results regarding the impacts of velocity 

change were obtained by Naeeni and Yaghoubi (2007). The simulated velocity profiles for 

inlet airflow velocities of 0.5 m/s (98 ft/min) and 5 m/s (980 ft/min) led to the conclusion 

that the airflow velocity does not affect the flow pattern around an obstruction in an entry. 

Therefore, a variation in airflow velocity does not change the length of the disturbed area 

downstream of an obstruction. Thus, velocity can be ignored as a factor to determine the 

optimum measurement distance from an obstruction.

Criteria specifying the minimum downstream distance

The above studies have made it clear that the minimum measurement distance downstream 

of an obstruction is dependent upon the entry size and the obstruction size, but independent 

of the inlet velocity. With this knowledge, mine operators would benefit from guidelines to 

position air velocity measurement locations around an obstruction if a mathematical 

relationship could be developed between the minimum downstream distance and the entry 

size and obstruction size.
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The configurations for all previously illustrated CFD models are shown in Table 1. 

Hydraulic diameters, a very common concept used in fluid dynamics, are employed to 

represent the sizes of the entry. The hydraulic diameter of the entry (DH) can be calculated 

as shown in Eq. (1):

(1)

where A is the flow area and P is the wetted perimeter defined as the perimeter of the cross 

sectional area in contact with the fluid body. The wetted perimeter of a ventilation entry 

equals the perimeter of the entry since it is full of air. For an obstruction in a fluid flow, the 

obstruction characteristic dimension (usually its hydraulic diameter) is used to represent its 

size (Raghunathan et al., 2002; Berthier and Silberzan, 2009). The hydraulic diameter of the 

obstruction (dH) can be calculated with Eq. (1). Of particular interest is the idea of a 

minimum distance downstream from an obstruction where an airflow reading can be 

accurately made. To determine the minimum distance, the velocity along the centerline of 

the wake zone was plotted for each case in Table 1. The distance at which the velocity curve 

flattens was chosen as the minimum distance. The logic of this approach is that an airflow 

measurement made further away from the obstruction would be very similar to that found at 

the minimum distance, while a reading made closer to the obstruction would be more 

inaccurate due to the presence of eddies and vortices.

Given the above approach, if the variable Y is defined as the ratio of the minimum distance 

(L) to the hydraulic diameter of the obstruction (dH), and X is defined as the ratio of DH/dH, 

then five datasets of Y and X can be plotted as shown in Fig. 12. A least squares regression 

produces the following expression relating X and Y:

(2)

with R2 = 0.7. Substituting Y and X into the relationship yields the minimum distance as a 

function of DH and dH:

(3)

The data in Table 1 show that the old recommendation specifying a minimum distance of 10 

times the entry diameter generally overestimates this distance. This new relationship, as 

shown Eq. (3), specifies the minimum downstream distance for an air velocity measurement, 

considering the influence of both entry size and obstruction size.

Impact on the fixed-point air velocity sensor

When a mine ventilation network becomes very large and complex, remote monitoring of 

key parameters can provide first-hand knowledge of underground conditions. The 

continuous monitoring of air velocity in underground mining operations allows for fast 

recognition of changes and enables the mine operator to identify the occurrences of 

abnormal airflow levels. To this end, the fixed-point velocity sensor is usually mounted at a 

location in the entry to measure the air velocity for the long term. The likelihood that either 
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a stationary or moving obstruction such as equipment or personnel will be moved or be 

positioned near the measurement location is unavoidable. Therefore, the question arises as to 

whether a fixed-point air velocity sensor can detect the unexpected presence of personnel, 

machinery or even a roof fall.

To address this issue, a CFD model was created to assess the impacts of an obstruction on 

the readings of a fixed-point velocity sensor. An entry size of 5.5 m (18 ft) wide by 2.4 m (8 

ft) high and cart dimensions of 1.2 m (4 ft) high by 0.95 m (3.1 ft) wide were again assumed. 

The impacts of the obstruction on the readings of a fixed-point velocity sensor mounted 

along the centerline of the entry at distances of 0.1, 0.2, 0.3, 0.4 and 0.5 m below the roof 

were simulated using CFD, and the results are shown in Fig. 12.

It is known that sensor locations closer to the roof may record lower velocities due to the 

viscous effects of the surface of the entry at the boundary layer. The results in Fig. 12 show 

that variations in velocity measurements above an obstruction can exceed 10% of the 

velocities upwind and downwind of the obstruction. The velocity increase was located in the 

interval from X = 20 m (66 ft) to 24 m (79 ft) in Fig. 12, which is not much larger than the 

cart itself. Unless the fixed-point sensor is located in the area above the obstruction, a very 

limited likelihood exists to detect a change in velocity given the rapid return to upstream 

velocity conditions.

Conclusions

A CFD model was built using Ansys/Fluent to investigate the impacts of an obstruction on 

the downstream distribution of airflow and to specify the proper positioning of a device to 

record airflow velocities. The model was successfully validated with experimental data that 

confirmed the agreement between the simulated and field results. Wake zones caused by the 

interaction of the airflow with the obstruction were clearly displayed. The size and extent of 

the wake zone downstream of an obstruction in an underground entry was affected by the 

entry size and the obstruction size.

Test results confirmed the results of other researchers—specifically, that inlet velocity did 

not affect airflow distribution around this obstruction. Of particular importance was the 

minimum distance at which an air velocity monitor could be placed to avoid airstream 

disruptions caused by the obstruction. Previous work specifying a minimum downstream 

distance of 10 times the entry diameter was found to be overly conservative. An analytical 

expression L = 3.3DH + 10dH determined the minimum downstream distance as a function 

of both the entry size and the obstruction size.

The effects of the obstruction on the fixed-point velocity sensor were also considered. The 

output of a fixed-point velocity sensor was found to vary with the distance below the roof, 

while the obstruction influenced the sensor only over a very limited distance. In other words, 

the impacts of an obstruction on airflow velocity were only seen close to the obstruction, as 

velocities quickly returned to upstream levels after passing the obstruction.

There are many variously shaped obstructions, such as equipment, personnel, occasional 

roof falls and rib rolls, existing in underground mines. This study considered the impacts of 
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a regularly shaped obstruction on an airflow distribution for which experimental data was 

available. The shape effect on the airflow mostly occurred at near body range, and the 

general conclusions obtained in this paper will not vary significantly when applied to 

irregularly shaped obstructions.
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Figure 1. 
Underground test locations at the NIOSH Bruceton Experimental Mine (after Martikainen et 

al., 2011).
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Figure 2. 
Anemometer placement at Location 1 (after Martikainen et al., 2011).

Zhou et al. Page 12

Trans Soc Min Metall Explor Inc. Author manuscript; available in PMC 2015 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Three-dimensional CFD model layout.
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Figure 4. 
Airflow distribution and air velocity measurement points 3 m downstream of the 

obstruction.
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Figure 5. 
Comparison of measured and simulated air velocity measurement points shown in Fig. 4.
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Figure 6. 
Velocity contours (above) and velocity vectors (below) at the centerline plane.
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Figure 7. 
Velocity contours for the 3.5-m-by-1.9-m entry (top) and the 5.5-m-by-2.4-m entry 

(bottom).
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Figure 8. 
Velocity contours with a cart height of 1.2 m at the plane y = 0.6 (top) and with a cart height 

of 2.0 m at the plane y = 1.2 m (bottom).
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Figure 9. 
Velocity contours with cart widths of 0.95 m (top) and 2.95 m (bottom) at the plane y = 0.6 

m.
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Figure 10. 
Velocity contours at a central plane for an inlet velocity of 0.5 m/s (top) and 5 m/s (bottom).
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Figure 11. 
Regression of L/dH on DH/dH.
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Figure 12. 
Comparisons of the virtual fixed-point velocity sensor readings for various mounting 

distances below the roof.

Zhou et al. Page 22

Trans Soc Min Metall Explor Inc. Author manuscript; available in PMC 2015 September 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 23

Table 1

Data for entry size, obstruction size and minimum distance (unit: m), based on configurations for all 

previously illustrated CFD models.

Entry Obstruction Min. Distance

Width Height DH Width Height dH

5.50 2.40 3.34 0.95 1.2 1.06 21

5.50 2.40 3.34 0.95 2 1.29 26

5.50 2.40 3.34 2.95 1.2 1.71 28

3.50 1.90 2.46 0.95 1.2 1.06 18

2.90 1.90 2.30 0.95 1.2 1.06 18
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